En identitetsmatris eller ordningsenhet n är en kvadratmatris där alla dess element är nollor (0) minus elementen i huvuddiagonalen som är en (1).
Med andra ord har en identitetsmatris endast en (1) på huvuddiagonalen och alla andra element i matrisen med nollor (0). Dessutom identifieras identitetsmatrisen som en kvadratisk form eftersom den är en kvadratisk matris.
MatrisoperationerRepresentation av en identitetsmatris
Vi kan skapa oändliga kombinationer av enhetsmatriser så länge vi respekterar villkoren för att vara en kvadratmatris: med samma antal rader (n) och kolumner (m).
Egenskaper
När vi utför operationer med enhetsmatrisen borde vi inte bli nervösa. Vi måste tänka på identitetsmatrisen som nummer ett (1).
Nummer ett
- När vi multiplicerar med ett (1) valfritt annat tal har vi samma antal (neutralitet). Givet en konstant z eller någon skalär:
- Om vi gör det inversa av nummer ett (1) får vi samma nummer ett (1) (reversibel).
- När vi höjer nummer ett (1) h-enheter kommer vi alltid att ha nummer ett (1) (idempotens).
Identitetsmatris
- Neutralitet. När enhetsmatrisen deltar i en multiplikation av matriser kallas det en neutral produkt. Givet vilken matris som helst Z:
- Reversibel. Enhetsmatrisens inversa matris är identitetsmatrisen:
- Idempotens. Den upphöjda inversa matrisenheterna h (naturligt tal) är fortfarande enhetsmatrisen:
Förfarande för att identifiera en identitetsmatris
- Matrisen måste vara en kvadratmatris.
- Matrisen måste ha en (1) på huvuddiagonalen och nollor (0) i de andra positionerna.
Applikationer
Identitetsmatrisen deltar lika många gånger som nummer ett (1) deltar i algebra. Till exempel, när vi multiplicerar vilken matris som helst med dess inversa matris, kommer vi att få enhetsmatrisen.
Teoretiskt exempel
Är följande matriser identitetsmatriser?
Matris IA:
- Fyrkantig matris.
- Icke-identitetsmatris: på huvuddiagonalen finns ett annat nummer än ett (1) och i de andra positionerna finns ett annat nummer än noll (0).
Matris IB:
- Inte kvadratisk matris.
- Ingen identitetsmatris.
IC-matris:
- Inte kvadratisk matris.
- Ingen identitetsmatris.
Matris-ID:
- Fyrkantig matris.
- Identitetsmatris: i huvuddiagonalen finns en (1) och i de andra positionerna finns nollor (0).
IE-matris:
- Fyrkantig matris.
- Ingen identitetsmatris: även om det i de andra positionerna finns nollor (0), finns det i huvuddiagonalen ett annat nummer än ett (1).