Linjär diskriminantanalys, eller Linear Discriminant Analysis (LDA), är en statistisk teknik som skapar en funktion som kan klassificera fenomen med hänsyn till en serie diskriminerande variabler och en sannolikhet att tillhöra.
Därför har vi att göra med en typ av statistisk procedur som försöker gruppera baserat på vissa likheter. På detta sätt tillåter det att kvantifiera sannolikheten för att tillhöra den ena eller den andra gruppen. Dessa grupper är kända a priori, till skillnad från klusteranalysen.
Matematisk modell för diskriminerande analys
Låt oss se hur den matematiska modellen för en diskriminerande analys skulle se ut.
Det är väldigt enkelt, eftersom det är baserat på ett system med linjära ekvationer. Naturligtvis är analysen mer komplicerad, men detta skulle ligga utanför Economy-Wiki.com, den enkla ekonomin.
Som vi kan se är de en serie ekvationer vars beroende variabel (y) representerar vissa poäng. Dessa är i sin tur linjära funktioner för andra diskriminerande variabler (X) och för en serie parametrar (a).
Målet, genom dessa linjära kombinationer, är att maximera variansen mellan grupper och minimera den som sker mellan grupper. På detta sätt kan nya fall grupperas med en viss sannolikhet som vi kan känna till deras värde, förutsatt att de uppfyller dessa kriterier.
Process att följa för att utföra en diskriminerande analys
Låt oss se hur en analys av denna typ kan utföras:
- Först måste du skapa en datatabell med fall och variabler. Dessutom ingår en kategorisk variabel som definierar var och en av grupperna.
- Därefter genereras den matematiska modellen med numeriska data. Detta kommer att baseras på det vi såg i föregående avsnitt. Statistisk programvara som SPSS eller gratis R automatiserar hela processen.
- Slutligen kommer vi med denna analys att kunna förklara varför varje fall tillhör en eller annan grupp och dessutom skapa ett medlemskapskriterium för nya fall. Detta kommer att baseras på sannolikheten att omfattas av den ena eller den andra.
Exempel på tillämpning av diskriminerande analys
För att avsluta, låt oss titta på några exempel på tillämpningen av diskriminerande analys.
Låt oss också komma ihåg att målet för alla är att skapa en diskriminerande funktion som grupperar varje nytt fall efter en sannolikhet.
- Vi vill klassificera olika länder baserat på deras makroekonomiska data: Underutvecklade, framväxande eller utvecklade länder (grupper). Vi skapar den diskriminerande funktionen så att vi kan beräkna sannolikheten för att ett land tillhör den ena eller den andra gruppen.
- Vi vill genomföra en marknadsföringskampanj och vi är intresserade av att veta i vilka grupper vi ska klassificera individer: Således kan vi svara på vissa frågor, till exempel vad som skulle känneteckna en enstaka kund.
- Vi vill veta risknivån (grupp) för vissa kunder när det gäller beviljande av ett lån: Vi använder variabler relaterade till din inkomst, månatliga utgif.webpter, historik eller typ av arbete. Diskriminerande funktionen ger oss relevant information om solvens.
Som vi kan se är diskriminerande analys mycket användbar i många situationer. Men inte bara relaterat till ekonomi, det används också inom medicin, geologi eller biologi, bland andra områden.